

Fyzika s ťažkými iónmi

alebo malý tresk

Karel Šafařík, CERN

Hmotnosť nukleónov

 Σ hmotnosti kvarkov ~ ~ 1 % hmotnosti p/n !

väzbová energia

Vákum v QED a QCD kvantová elektrodynamika: QED kvantová chromdynamika: QCD

 Energia páru nábojov spontánne narodených vo vákuu – kvantová fluktuácia (h = 1, c = 1):

$$\begin{split} \mathsf{E}_{kin} &= p \sim 1/r & (p \times r \ge 1) \\ \mathsf{E}_{pot} &= - \, q^2/(4\pi r) & (q = e \text{ or } q = g_s) \end{split}$$

$$E = E_{kin} + E_{pot} = (1/r) \times (1 - q^2/4\pi)$$

- v QED toto je pravda pre lubovlonú "škálu" (už po Planckovu "škálu" ~ 10⁻²⁰ fm)
- v QCD to je však správne len pre velmi malé vzdialenosť, niekol'ko fm (10⁻¹³ cm)

v QED

 $q^2 = e^2 = 4\pi\alpha_{em}$

α_{em} sa mení zo vzdialenosťou (polarizácia vákua)

- kde pre velké vzdialenosti $\alpha_{em} = 1/137$
- pri EW (elektro-slabej) škále (r = 2×10^{-3} fm) $\alpha_{em} = 1/128$
- pri Planckovej "škále" (r = 10⁻²⁰ fm) α_{em} = 1/76
- To znamená, ze číselný faktor pred 1/r: (1 q²/4π) sa mení zo vzdialonosťou, ale
 - len málo, medzi 0.987 0.993 (i.e. 0.6%) ak meníme vzdialenosť od Planckovej "škály" až po nekonečno…

Prípad QCD

• v QCD

 $q^2 = g_s^2 = 4\pi\alpha_s$

- kde α_s sa zmenšuje vel'mi rýchlo zo vzdialonosťou (asymptotická sloboda)
- pri Planckovej škále
 α_s = 0.04
- pri elektro-slabej skále α_s = 0.118
- pri Λ_{QCD} ≈ 0.2GeV (r ≈ 1 fm) α_s ≈ 1
- numerický faktor $(1 q^2/4\pi) = 1 \alpha_s$
 - sa znižuje so vzdialenosťou, pri Planckovej škále je 0.96
 - ale pozor, pre r ≈ 1 fm uz je záporný !
- pri vačších vzdialenostíach je E = σ×r (σ ≈ 1 GeV/fm)
 - a tento faktor je opäť kladný

QED versus QCD

Kinetická energia stále dominuje nad potenciálnou (pole je slabé) virtual páry Energia skrytá v poli prevázi pri nejakej vzdialenosti kinetickú reálne páry – vakuový kondensát

- QCD má dve približné symetrie:
 - Z_3 –(centre) symetriu (pre čisto kalibračnú toer, v limite $m_q \rightarrow \infty$)
 - chirálnu symetriu (obnovenú pre nulové hmotnosti, t.j. $m_q \rightarrow 0$)
- Pri vel'kých hustotách a teplotách sa nakoniec
 - Z₃-symetria naruší (prechod od confinementu k deconfinementu)
 - chirálna symetria obnoví (chirálny fázový prechod)

Otázky:

- existuje jeden spoločný fázový prechod alebo dva nezávislé?
- akého druhu je tento (tieto) fázový(é) prechod(y)
 - prvého druhu (má latentné teplo) ?
 - druhého druhu (len zlom) ?
 - alebo je to len cross-over prechod ?

• Pre $m_q \rightarrow 0$ helicita kavarkov sa zachováva

 pretože gluóny majú helicity ±1 QCD teória v tejto limite má SU(3)_L×SU(3)_R symetriu

QCD svet sa rozpadol na dva svety ktoré navzájom nekomunikujú – lavácky svet a pravácky

- ak dáme do QCD vákua nehmotný lavotočivý kvark, on môže anihilovat' s lavotočivým anti-kvarkom z vákuového kondenzátu – tým sa ale oslobodí pravotočivý kvark
 - pre vzdialeného pozorovatela naš testový kvark spontánne zmenil helicitu a preto musel nejako získať dynamickú hmotnosť !

QCD kvark—anti-kvarkový kondenzátate generuje dynamické kvarkové hmotnost a narušuje chirálnu symetriu

- ak zvýšime teplotu kinetická energia nabitého páru (nad nejakou hodnotou) prevýši potenciálnu energiu
 - kvark—anti-kvark kondenzát zmizne z vákua
 - chirálna symetria sa obnoví nad nejakou kritickou teplotou
 - hodnota <0|qq|0> je "order parameter" fázového prechodu

• hmotné kvarky v čisto gluónovom vákuume pri nulovej teplote

- nie sú viditelné detektorom kvôli deštruktívnej inerferencii
- expectation hodnota pre stopu kvarkového propagátoru 3– hodnotový path integrál s rôznými fázami

exp (i $\times 2\pi j/3$), j=1,2,3 (generátory Z₃)

zvyšujúc teploty ⊤ až po nejakú hodnotu toto zostane tak

až pokial gluónové pole bude mať dostatok času sledovať (koherentný rearangement) náš testový farebný náboj

- Dalšie zvýšenie teploty (nad nejakú kritickú hodnotu) gluónové pole nebude mať dostatok času
 - Interferencia troch ciest sa naruší
 - test farebný náboj sa stane detekovatelný, bude deconfinovaný
- Toto sa dá spočítať analytickým predlžením kvarkového propagátoru v komplexnom case (t = +i/T) – Polyakov loop – ktorý sa stane nenulovým pre T > T_c

Polyakov loop je "order parameter" fázového prechodu

- Obidve symetrie sú narušené dynamicky
 - Z₃ symmetria je narušená kinetickou energiou (pri vysokej T)
 - order parameter (Polyakov loop) je nulový pod $\rm T_{c}$ a nenulový nad
 - je to "order disorder" fázový prechod, Z_3 je narušená nad T_c
 - chirálna symetria je narušená potenciálnou energiou (pri nizkej T)
 - order parameter (kvark—anti-kvarkový kondenzát) je nenulový pod T_c a nulový nad
 - je to "disorder order" fázový prechod, chirálna symetria je obnovená nad $\rm T_{c}$
- Obidve sú však narušené aj explicitne hmotnosťou
 - pre malost' m_q je reálne že scénar ohl'adom chirálnej symetrie zostane dobrým priblížením
 - ale čo so Z₃ symetriou, prečo nie je úplne zničená malosťou m_q ?

- Ked sa snažíme znižiť m_q z nekonečna na ich vlastnú (malú) hodnotu to co sa stane závisí od teploty:
 - pri nízkych teplotách m_q sa efektívne prestane znižovať keď prídeme pod dynamickú hmotnosť kvarku M_q ≈ 350 MeV pretože chirálna symetria je narušená
 - Z₃ symetria zostane približnou symetriou pri nízkych teplotách aj po takomto tvrdom pokuse o explictné narušenie
 - narušenie chirálnej symetrie efektívne zvyšuje hmotnosti kvarkov a preto riadi obnovenie Z₃ symetrie
 - toto je argument preto, aby obidva fázové prechody nastali v tom istom bode

Fázy QCD – hračkársky model

- fázu v confinemente (hadrónový plyn, HG) z piónov
- deconfinovanú fázu (kvark—gluónovú plazma, QGP) z gluónov a dvoch typov (vôní) kvarkov
- stavové rovnica pre ideálny plyn

$$\epsilon = (g/30) \pi^2 T^4$$
, $p = \epsilon/3 = (g/90) \pi^2 T^4$
kde $g = n_b + (7/8) n_f$

• **pre HG**
$$n_b = 3, n_f = 0$$

pre QGP: n_b = 16, n_f = 24 ale teraz máme aj vonkajší tlak od QCD vákua B

$$p_{QGP} = (37/90) \pi^2 T^4 - B$$

na hranici dvoch fáz – tlak musí byťrovnaký

 $T_c = (90B/34\pi^2)^{1/4} = 144 \text{ MeV}$ pre $B^{1/4} = 200 \text{ MeV}$ (MIT bag model)

Fyzika tázkých iónov Karel Šafařík

pri nenulovej baryónovej hustote – prvý rád p-QCD

$$\begin{split} \epsilon &= [16(1-15\alpha_{\rm s}/4\pi) + (7/8)12n_{\rm q}(1-50\alpha_{\rm s}/21\pi)] \ (1/30) \ \pi^2 T^4 + \\ &+ \Sigma_{\rm q} \ 16(1-15\alpha_{\rm s}/2\pi) \ (3/\ \pi^2)\mu_{\rm q}^2(\pi^2 T^4 + \mu_{\rm q}^2(\ /2) \end{split}$$

(pre $\mu_q = 0$, $\alpha_s = 0$, a $n_q = 2$ dostaneme náš hračkársky model)

použijúc $\alpha_s = 0.4$ tou istou cestou dostaneme T_c = 164 MeV

Dnes analytické výpočty existujú aj pre vyššie rády

Lattice QCD at high temperature

Big Bang

Priestorovo-časový vývoj

Space-time evolution in ultrarelativistic ion collisions

R_{AA} and v_n – definitions

*R*_{AA} – ratio of *p*_T spectrum in AA collisions to that in pp – properly normalized by number of binary collisions

$$R_{AA} = \frac{(d\sigma/dp_T)_{AA}}{N_{bin}(d\sigma/dp_T)_{pp}} = \dots$$

if AA would be just a superposition of pp collisions $R_{AA} = 1$

• v_n – Fourier coefficients of particle distributions in azimuthal angle φ with respect to *n*-th reaction plane

$$\frac{dN}{d\varphi}(\dots) \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \psi_n)$$

 $v_n = 0$ would mean azimuthally symmetric distribution

CMB maps

WMAP results

0.2°

TT

TE

Od velkeho tresku k LHC - stvorenie Vesmiru v laboratoriu

1000

Composition of matter

- today 72% of matter of the Universe – dark energy
- before ~7 x 10⁹ years the Universe accelerated its expansion
- vacuum energy? scalar field? cosmological constant?
- 23% is (cold) dark matter, what is it?

Planck satellite

Porovnanie rozlíšania: 10 x lepšie rozlíšenie než WMAP 9 frequency band (WMAP 5)

Planck

Od velkeho tresku k LHC - stvorenie Vesmiru v laboratoriu

Planck – prvé výsledky

Age of Universe: $13.798 \pm 0.037 \times 10^9$ years Hubble constant: 67.80 ± 0.77 (km/s)/Mpc Ordinary matter: 4.9 %Dark matter: 26.8 %Dark energy: 68.3%

Identified particles at intermediate p_T

11 April 2013 Experiment ALICE at LHC K.Safarik 23

Identified-particle v₂

v_2 and v_3 versus η

 v_2 and v_3 measurements extended up to $\eta = 5$ observed plateau in pseudorapidity ($|\eta| < 2$) very good agreement between ALICE and CMS for v_2 in $|\eta| < 2.4$ A.Hansen

consistent with longitudinal scaling in $\eta - y_{\text{beam}}$ with PHOBOS data

 v_3 and v_4 diminish above 10 GeV/c – indication of disappearance of fluctuations at high p_T

D meson v₂

Indication of J/ ψ regeneration at low p_T ?

11 April 2013 Experiment ALICE at LHC K.Safarik

Direct photon production

ICE

ALICE future plans

Precision measurement of the QGP parameters at $\mu_b = 0$ to fully exploit scientific potential of the LHC – unique in:

- large cross sections for hard probes
- high initial temperature

• Main physics topics, uniquely accessible with the ALICE detector:

- measurement of heavy-flavour transport parameters:
 - study of QGP properties via transport coefficients (η/s , \hat{q})
- measurement of low-mass and low- p_{T} di-leptons
 - study of chiral symmetry restoration
 - space-time evolution and equation of state of the QGP
- J/ ψ , ψ ', and χ_c states down to zero p_T in wide rapidity range
 - statistical hadronization versus dissociation/recombination

ALICE dielectrons

ALICE

inclusive dielectron invariant mass

... excess after subtraction

new ITS and high-rate upgrade, with "tight" impact parameter cut...

Common Questions

generation of mass

- ☆ elementary particles => Higgs
- ☆ composite particles => QGP
- => ALICE

=> ATLAS/CMS

missing symmetries

- SuperSymmetry: matter <-> forces => ATLAS/CMS
- Chiral Symmetry: mass of light quarks => ALICE
- CP Symmetry: matter <-> antimatter => LHC-B

Different Approaches

- Concentrated Energy' => (single) high mass particles
- ⇒ 'Distributed Energy'
 - => interaction between matter & vacuum
- 'Borrowed Energy'
 - => indirect effects of very high mass particles

Big Bang ↔ Little Bangs

 The matter content of the Universe
 Dark matter
 Dark energy
 Origin of matter Experiments at particle colliders Early Universe
 Supersymmetry Matter-antimattee

Learn particle physics from the Universe Use particle physics to understand the Universe

Zhrnutie

- LHC a vsetky experimenty pracuju tri roky perfektne
 - intezity zvazkov a mnozstvo zaznamenanych zrazok ovela nad ocakavanie
 - prve fyzikalne vysledky publikovane presne potvrdenie stadartneho modelu Higgsov bozon najdeny – podla predpovedi hmotnost ~ 125 GeV fluktacie v pociatocnom stave v zrazkach tazkych ionov dosiahnuta teplota v zrazkach tazkych ionov ~ 300 MeV
- Looking forward to explore the 'terra incognita' at LHC

